

This policy has been written in line with the new national curriculum of 2014. (See appendix) It aims to provide guidance so that all children will be able to use an efficient and accurate formal written method. The stages leading to each formal method are given in this policy. Teachers and staff should use their judgements as to where each child is currently working and begin developing their understanding from that stage.

Thanks to the White Rose Hub and NCETM for providing supporting content.

Some points to note:

- We will use the vocabulary Thousands Hundreds Tens and Ones (TH H T O) Some materials may still use the term 'units' instead of 'ones' therefore children will be taught to understand both.
- When writing large numbers, we will use commas.
- When teaching $\times 10,100 \div 10,100$ we will use the language that the numbers slide either left or right and a zero appears which becomes the place holder (rather than add a zero).
- In formal written methods children will be asked to:
$>$ line up the HTO
$>$ start by adding the ones, when you start a written column method start from the right
$>$ any carrying will be shown below the line
$>$ when using decomposition, the word 'Exchange' is used.
$>$ remainders will be recorded as r12 (full size number)
$>$ Decimal points will be positioned on the line.

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Objective and Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model	Use cubes to add two numbers together as a group or in a bar.		$4+3=7$ Four is a part, 3 is a part and the whole is seven.
Starting at the bigger number and counting on (using a number line)	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

			The abstract number line: What is 2 more than 4? What is the sum of 2 and 4 ? What is the total of 4 and 2? $4+2$
Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Use pictures or a number line. Regroup or partition the smaller number to make 10 .	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now? $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$

Adding three single digits.	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7 . Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit. Find the number bonds!	Set out drawings in a ten-frame style to support. :::::	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
Column Method (no regrouping) TO + O, TO using base 10	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters. $41+8$	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions. Children represent the tens and ones using a line for tens and a square or circle for ones.	$41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$ $\begin{array}{r} 41 \\ +\quad 8 \\ \hline 49 \end{array}$ Calculations $\begin{array}{r} 21+42= \\ 21 \\ +\underline{42} \end{array}$

Conceptual Variation; different ways to ask children to solve $21+34$

	21
Word problems: 21 cildre and	+34
In year 3, there are 21 children and in year 4 , there are 34 children.	21
How many children in total?	

Calculate the sum of twenty-one and thirty-four.

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Objective and Strategy	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-2=4$ (ten frames, Numicon, cubes and other items such as beanbags could be used). $4-3=1$	Cross out drawn objects to show what has been taken away. Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. இ囚O $\begin{array}{\|l\|l\|l\|} \hline x\|x\| \\ \hline \end{array}$	$\begin{aligned} & 18-3=15 \\ & 8-2=6 \\ & 4-3= \\ & -1=4-3 \end{aligned}$ \square

Find the difference

Make 10	Making 10 using ten frames. 14-5	Children to present the ten frame pictorially and discuss what they did to make 10. Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	Children to show how they can make 10 by partitioning the subtrahend. $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$ $16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off? or complete calculation using mental methods of making ten.
Column method (no regrouping)		 Draw the Base 10 or place value counters alongside the written calculation to help to show working.	$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ -\frac{48}{20}+3 \\ -\frac{47}{41} \end{gathered}$ This will lead to a clear written column subtraction. $\begin{array}{r} 32 \\ -\frac{12}{20} \\ \hline \end{array}$

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Objective and Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number.	Draw pictures to show how to double a number. Double 4 is 8	 Partition a number and then double each part before recombining it back together.
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

Repeated
addition/grouping

\begin{tabular}{|c|c|c|c|}
\hline Arrays-showing commutative multiplication \& \begin{tabular}{l}
Use arrays to illustrate commutativity counters and other objects can also be used. \\
\(2 \times 5=5 \times 2\) \\
5 lots of 2
\end{tabular} \& \begin{tabular}{l}
\begin{tabular}{ll}
00 \& 00000 \\
00 \& 00000 \\
00 \& \\
00 \& \\
00 \&
\end{tabular} \\
Draw arrays in different rotations to find commutative multiplication sentences. \\
Link arrays to area of rectangles.
\end{tabular} \& \begin{tabular}{l}
Children to be able to use an array to write a range of calculations e.g.
\[
\begin{aligned}
\& 10=2 \times 5 \\
\& 5 \times 2=10 \\
\& 2+2+2+2+2=10 \\
\& 10=5+5
\end{aligned}
\] \\
00000

$$
\begin{aligned}
& 5+5+5=15 \\
& 3+3+3+3+3=15 \\
& 5 \times 3=15 \\
& 3 \times 5=15
\end{aligned}
$$

\end{tabular}

\hline Partitioning \& | Partition to multiply using Numicon, base 10 or Cuisenaire rods. |
| :--- |
| 4×15 | \& Children to represent the concrete manipulatives pictorially. \& | Children to be encouraged to show the steps they have taken. |
| :--- |
| $\times 15$ |
| 105 |
| $10 \times 4=40$ |
| $5 \times 4=20$ |
| $40 \cdot 20=60$ |
| A number line can also be used |

\hline
\end{tabular}

Conceptual variation; different ways to ask children to solve 6×23

23	23	23	23	23	23	Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week? With the counters, prove that 6×23 $=138$	Find the product of 6 and 23$\begin{aligned} & 6 \times 23= \\ & i-7=6 \times 23 \end{aligned}$	What is the calculation? What is the product?		
								100s	10 s	1s
?									88	000 008 008
						$\begin{array}{r}6 \\ 23 \\ \times \quad 63 \\ \hline\end{array}$		88	080 0008 008	

Calculation Policy: Division

Key language: share, group, divide, divided by, half.
Objective and
Strategy
Sharing objects into
groups

Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $96 \div 3=32$	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?
Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rr} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$

Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over $2 d+1 d$ with remainders using 10 lipop sticks. Cuisenaire rods, above a ruler can also be used. $13 \div 4$ Use of Iollipop sticks to form wholes- squares are made because we are dividing by 4 . \square \square There are 3 whole squares, with 1 left over.	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. Children to represent the lollipop sticks pictorially. There are 3 whole squares, with 1 left over.	Complete written divisions and show the remainder using r . $13 \div 4-3$ remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. ' 3 groups of 4 , with 1 left over'

Short division	 Use place value counters to divide using the bus stop method alongside Short division using place value counters to group. $615 \div 5$ 1. Make 615 with place value counters. 2. How many groups of 5 hundreds can you make with 6 hundred counters? 3. Exchange 1 hundred for 10 tens. 4. How many groups of 5 tens can you make with 11 ten counters? 5. Exchange 1 ten for 10 ones. 6. How many groups of 5 ones can you make with 15 ones?	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently. Represent the place value counters pictorially.	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder. 5 432 Finally move into decimal places to divide the total accurately.

Long division	$2544 \div 12$ How many groups of 12 thousands do we have? None Exchange 2 thousand for 20 hundreds. $1 2 \longdiv { 0 } \longdiv { 2 5 4 4 }$ How many groups of 12 are in 25 hundreds? 2 groups. Circle them. We have grouped 24 hundreds so can take them off and we are left with one. Exchange the one hundred for ten tens so now we have 14 tens. How many groups of 12 are in 14 ? 1 remainder 2 $\begin{array}{r} 1 2 \longdiv { 0 2 1 } \\ \frac{24}{2544} \\ \hline 14 \\ \frac{12}{2} \end{array}$ Exchange the two tens for twenty ones so now we have 24 ones. How many groups of 12 are in 24 ? 2 $\begin{array}{r} \begin{array}{r} 0212 \\ 12 \lcm{2544} \\ 24 \\ \hline 14 \\ \hline 12 \\ \hline 24 \\ \hline 24 \\ \hline \end{array} \\ \hline \end{array}$	Tnstead of using physical counters, students can draw the counters and circle the groups on a whiteboard or in their books. Use this method to explain what is happening and as soon as they have understood what move on to the abstract method as this can be a time consuming process.	$20 \begin{array}{rrrr} 0 & 3 & 1 & 8 \\ \hline 6 & 3 & 6 & 5 \\ -6 & 0 & 1 & 1 \\ -3 & 6 \\ -2 & 0 & 1 \\ -1 & 6 & 5 \\ 1 & 6 & 0 \\ \hline \end{array}$

Conceptual variation; different ways to ask children to solve $615 \div 5$

